

Comparative Analysis Of Copy Number Variants In Cell-Free DNA From Metastatic Prostate Cancer Patients Using Internal Standards and Next-Generation Sequencing

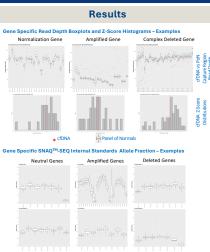
¹Huntsman Cancer Institute and the University of Utah, ²AccuGenomics, Wilmington, NC, USA

David A. Nix¹, Brian H. Dalley¹, Claire H. Hanson¹, Enos Ampaw¹, Matt Larsen¹, Bradley B. Austermiller², Thomas B. Morrison², Manish Kohli¹

Abstract # ST071

Introduction

Tracking metastatic treatment response by Next-Generation Sequencing (NGS) of cfDNA provides a simple sample source but lacks methods to standardize results. An often-used analytic approach, internal standards, is being explored for its ability to standardize NGS testing results. Prospective plasma cfDNA from metastatic castrate resistant prostate cancer (PC) patients receiving standard of care treatments at a tertiary level cancer center were tested using a focused gene NGS panel. This presentation compares Copy Number Variant (CNV) detection with and without novel SNAQTM-SEQ Internal Standards (IS). All patients were followed for clinical outcomes


Methods

- Small Capture Panel Design: A PC specific, 43 gene, hot-spot capture panel was created to identify CNVs, short variants, and a gene fusion in liquid biopsy samples. Each gene contains >=20 unique 150bp capture regions covering most exons.
- SNAQ[™]-SEQ IS: AccuGenomics developed 28 IS to 10 PC driver gene mutations with clinical utility. IS contain unique base change spanning the IS target region every ~80 bases enabling bioinformatic identification. IS are randomly fragmented to 170±30 bases to simulate cfDNA fragment size. The IS input was adjusted to ~8% Variant Allele Frequency (VAF) based on each sample's plasma cfDNA or buffy coat mass (sizes 50-700 bp by TapeStation), After sequencing, IS VAFs were converted to abundance measurement from which copy number and variant plasma/ buffy coat concentration were calculated.
- Next Generation Sequencing (NGS): Library preparations (LPs) utilized dual index adapters with unique, inline, 8bp molecular identifiers to enable PCB duplication and error rate reduction through consensus read stack base recalling. Pre (whole genome sequencing WGS) and post capture LPs were sequenced to 2-8x and > 2K x read depth on the NovaSeq X respectively to enable sensitive detection of variants with AFs of >= 0.5%.
- Analysis: Alignment and UMI deduplication + consensus error correction were performed using an open-source containerized snakemake workflow. Likewise, a GATK-USeg best practice somatic copy ratio analysis workflow was run on the WGS datasets to produce a standard key of CN calls for comparing CN analysis results from the panel. Five different methods were used to generate panel CN calls, two made use of the IS (AccuGenomics, ManPck) and three without (GATK-USeq, AppPickBstSc, and AppPickGnNm)

	Methods	
The second secon	(WT) T IDT xGen 2x8mer UDI-UMI Sequencing Libraries	NovaSeq
Normal Karyotype	PC Patient Cohort	
	Age at first paired collection (years)	69 [50, 85]
	Albumin (gm. percent)	4.0 [3.50, 4.60]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Serum prostate specific antigen PSA (ng/mL)	5.7 [0.1, 394.9]
i)i ng ng ng ng ng ng	Hemoglobin (g/dL)	13.4 [6.0, 15.00]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Serum alkaline phosphatase ALP (U/L)	106 [59, 590]
86 88 88 88 86	Gleason score at initial diagnosis:	
× ×× ×× Å ×	<8	11
8 22 64 65 8 8	>=8	13
	Missing	1
PC Tumor	De novo metastatic stage:	
1 24 268	Metastatic	11 (44%)
28 XIC / A688 80	Nonmetastatic	14 (56%)
	Treatment status at first collection: Treatment Naive	00/000/1
8 2222 + 22 - 222E 28		20 (80%)
	Not Treatment Naïve	5 (20%)
a ban 85 x8 x8x8 asa.	Patient vital status: Dead	22
68 as 88	Time to death (months)	22 23.2 [3.85, 43.43
9	Time to death (monuls)	23.2 [3.85, 43.43 Median [Min, Max
(Amparo, C., et. al., 2020 Can Gen and Prot)		median (Min, Ma

		# Alignments		Fold	Fraction		
Sample Set	# Fastq Reads	Pre Consensus	# Alignments Post Consensus	Consensus Reduction	Passing QC	Fraction On Target	
Panel cfDNA	182,452,880	182,181,845	22,825,228	8.4	0.97	0.54	
Panel Normal	179,912,091	179,667,107	27,119,295	6.6	0.97	0.64	
WGS cfDNA	231.712.674	231.621.536	175.680.395	1.8	0.99	NA	
WGS Normal	248,518,172	248,338,568	206,159,011	1.2	0.99	NA	
	Mean Insert	Fraction		Fraction O30	Mean on Target	Coverage @ 0.9 of	Cover
Sample Set	Size	BPs	# Unique BPs	BPs	Coverage	Target BPs	Target
Panel cfDNA	192.9	0.56	1,933,168,837	0.97	3654.9	2174.9	175-
Panel Normal	186.8	0.51	2,267,641,017	0.98	5040.3	3488.8	285
WGS cfDNA	166.9	0.68	14.359.303.642	0.98	4.9	1.8	1.3
WGS Normal	179.4	0.56	17,441,535,019	0.98	6.1	2.9	2.

Copy Alteration Metrics – Genes Field Typically Deleted PRISCA PRISCA BRCA3 CHER3 NOC3-1 TP53 2016

SATE-USeq	WSS	64																	0.03				
SATE-USeq	Panel	59																	0.00				
AccuGenomics	Panel	64	0.28	0.00	0.06	0.00	0.11	4.00	0.32	0.00	0.05	0.00	0.00	4.62	0.00	0.06	0.00	0.06	0.02	0.00	0.00	0.02	and the second
hopPex Intile	Panel	51																	0.00				With IS
SppPck Ga	Panel	51																	0.00				
ManPick Gin	Panel	64	6.28	0.06	0.23	0.05	0.19	4.00	0.00	0.09	0.03	0.00	0.00	4.43	0.00	0.05	0.08	0.09	0.03	4.05	0.29	0.03	
			N	01	18	im		45	00	101		2014	0	208	001	2281	CT	581		10	FO	KA1	
LATE-USeg	Wisk	- 64	6.09	0.05	0.17	0.00	1.06	1.00	6.29	0.00	0.01	0.00	1.00	1.08	6.22	0.00	0.11	0.02	1.08	1.02	0.00	0.02	
SATK-USeo	Frank	56	0.50	6.94	0.14	0.00	11.00	4.00	6.23	0.00	0.64	0.00	11.00	4.02	6.53	0.00	0.60	0.00	0.24	4.00	0.00	0.78	
NacPux Bartic	Frank	51																	0.04				Without
NacPck Gn	Panel	51	0.28	0.00	0.10	0.00	0.00	1.08	0.04	0.67	0.09	0.08	0.00	0.56	0.34	0.00	0.02	0.00	0.10	1.00	0.00	0.41	10
ManPuk Gn	Panel	64	0.13	0.06	0.17	0.00	0.02	1.00	0.22	0.28	0.03	0.03	0.00	2.06	0.22	0.00	0.09	0.00	0.34	0.00	0.02	0.30	IS
						-		-	-			-			۰.	-			~		-		
SATK-USeo	W05	44					1.00	÷											8.05				
SATE-USeg	Frank	56																	0.00				
NacPux Bartic	Frank	51																	0.00				
NacPux Gn	Frank	51																	0.00				Fraction of
Manifest Ga	Fand		6.23	0.50	0.15	0.00	0.02	1.00	6.80	0.00	0.04	0.00	0.00	1.10	6.85		0.04	0.00	0.06		0.00	6.73	
						-	50			-				-		-	-						analyzed
laTr.IIfeo	w/6	44																	0.05				
	Panel	64																	0.00				samples with
SATE-USeq NocPck Battle	Panel	51	6.00	0.12	0.00	0.08	0.00	14.00	6.00	0.02	0.00	0.03	0.00	1.00	6.00	0.02	0.00	0.13	0.00	<u>.</u>	6.00	0.39	copy
AppPox Bable	Panel	51																	0.00				
NanPix Ga	Panel	- 51	6.00	6.30	0.00	0.29	0.00	1.02	6.00	0.00	0.03	0.00	0.03	4.31	6.00	0.12	0.00	0.27	0.00	1.54	6.00	0.73	amplification
All Put un	Parm								1.00	0.00	0.14	0.00			10.000	0.00	0.00	0.28	4.00		10.000	0.00	and deletion
				12 C		F42	29																and deletion
SATE-USeq	WSG	64					1.03																
SATE-USeq	Panel	59					0.14																
AppPex Bartic	Panel	51	6.00				0.06																
NppPck Ga	Panel	51					0.09																
ManPuk Ga	Panel	64					0.27																

Conv Number Method Comparison 0.92 0.48 0.04 0.96 0.64 0.36 0.90 0.92 0.42 0.09 0.91 0.26 0.74 0.88 0.80 0.52 0.17 0.83 0.13 0.87 0.81 1.00 0.52 0.16 0.84 0.19 0.81 0.83 0.80 0.50 0.19 0.81 0.21 0.79 0.80 0.80 0.42 0.08 0.92 0.32 0.68 0.86 1.00 0.58 0.08 0.92 0.49 0.51 0.87 0.80 0.60 0.23 0.77 0.14 0.86 0.76 0.19 0.02 0.98 0.56 0.44 0.89 Copy Analysis N GATK.

Results

Conclusions

- Presented here is a comparison of several computational methods under development that make use of AccuGenomics IS for copy number analysis from a small capture panel where genome wide normalization is not possible.
- The fraction of samples showing copy alteration changes in the WGS datasets appear as expected with amplification of MYC (0.22), COL22A1(0.22), NCOA2(0.2), AR(0.17), and AR-Enhancer(0.17), Whereas NOTCH1(0.25), BB1(0.17), TP53(0.14), and NKX3-1(0.14) are deleted. The panel analysis largely replicate the WGS findings.
- · Of the three methods that did not utilize IS VAFs, the standard GATK-USeq somatic copy ratio analysis performed the best with an average recall of 0.48 and average precision of 0.64. This precision is not clinically viable. Too many false positives.
- · The IS copy analysis method that utilized both the IS VAFs and read depth data worked the best with a higher average recall of 0.58 and average precision of 0.49. The IS VAF alone method also performed well but utilized very stringent thresholds leading to call sets that match genes in the key but with many false negatives. Analysis is underway with relaxed thresholds.
- · Copy analysis with small panel capture designs looks promising when utilizing IS.
- · All analysis workflows and applications utilized here are open-source and available from

Limitations

- The WGS derived truth datasets approximate the true copy number alterations in the cfDNA samples. Thus, the confusion matrix statistics are an approximation.
- The IS were designed primarily for calculating the concentration of SNV/INDEL in plasma and thus are not entirely optimal for copy analysis, which typically requires 4 to 8 IS per gene.

Presented at AMP 2024 | Vancouver, BC